
62 579 INTESRATED INFORMATION SUPPORT SYSTEM (IISS) VOLUME I /
UOSER INTERFRCE SUBS.. CU) GENERRL ELECTRIC CO
SCNENECTROY MY PRODUCTION RESOURCES CONSU. L JONES

UNCLOSSIFIED ft NOV 85 UN 62614438M F/O L2/6 M

EEohEEEEohEEEE
EhhEEEmhmhohhE
EohEohmhmhEmhI

EEE~h~EE

IIIIIII___o

III MA___.l
11111.5 11111.4 1111

IIIJIL2 11111 .A 1.

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS 1963-A

wil Aw .) *w-

IV

J%

-a - S...

AFWAL-TR-86-4006 : .
Volume VIII
Part 11

AD-A 182 579

SUPPORT SYSTEM (IISS) %

Volume VIII - User Interface Subsystem
Part 11 - Virtual Terminal User Manual

General Electric Company
Production Resources Consulting
One River Road
Schenectady, New York 12345

Final Report for Period 22 September 1980 - 31 July 1985

November 1985

Approved for public release; distribution is unlimited.

)TIC

MATERIALS LABORATORY 11TIC'-E
AIR FORCE VRIGHT AERONAUTICAL LABORATORIES EU
AIR FORCE SYSTEMS COMMAND-53
VRIGHT-PATTERSON AFB, OH 45433-6533 JU E

I..
, a"

NOTICE

When Government drawings. specifications, or other data are used for any purpose other than
in connection with a definitely related Government procurement operation, the United States
Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the
government may have formulated, furnished, or in any way supplied the said drawings.
specifications. or other data, is not to be regarded by implication or otherwise as in any
manner licensing the holder or any other person or corporation, or conveying any rights or
permission to manufacture, use. or sell any patented invention that may in any way be related
thereto.

This report has been reviewed by the Office of Public Affairs (ASD/PA) and is releasable to the
National Technical Information Service (NTIS) At NTIS. it will be available to the general
public, including foreign nations.

This technical repo rhas been reviewed and is approved for publication.

DA ID L./JUD ON PROJECT MANAGER DATE
A AL/#L TC/

W IGHT PA ERSON AFB OH 45433

FOR THE COMMANDER:

E - ALD C. SHUMAKER, BRANCH CHIEF DATE
AFWAL/MLTC
WRIGHT PATTERSON AFB OH 45433

off your address has changed. it you wish to be removed from our mailing list, or if the

addressee is no longer employed by your organization please notify AFWAL/MLTC, W-PAFB, OH
45433 to help us maintain a current mailing list."

Copies of this report should not be returned unless return is required by security crn,4lrptuT

contractual obligations, or notice on a specific document

Unclassifiled/70
SCuMTV CLASSiVICAT1OF ?N TIS PAGE

REPORT DOCUMENTATION PAGE
Is MIPORT S1CWMITV Ci.ASSIPICAJON lb. 016SVRICTIVI MARN~GS

Unclassified

36 SEC6141TV CL.ASSIFICATIONd AUTHORITY 3. DISTRISUTIONAVALASiLITV OF REPORT

Approved for public release;
26 06C6^0910 ICATI@P4/13@WMNOIADING SCIOULIK distribution is unlimited.

6. PERFORMIaNG ORGANIZATION REPORT t4uMbEIS~l S. MONITORING ORGANIZATION REPORT NUUSERIIS)

AFVAL-TR-86-4006 Vol VIII, Part 11

G& NAME OF PERFORMING ORGANIZATION a. OPP ICI SYMBOL 74L NAME Of MONITORING ORGANIZATION

General Electric CompanyOfAWLKT
Production Resources Consulting AWLKT

Or- ADDRESS (ity,. Sig mm ZIP Cadep 711. AOM95.5 (city. SAand ZIP Co"),

Scheectay. IT 1245VPAFI. 0K 45433-6533

Gs NAME Of PUNDINGISPONSOMING do. OFFICE SVMSOL S. PROCUREMENT INSTRUMENT IDEN.TIFICATION NUMBER

Materis.ls Laboratory AWLKT P31-0C55
Air Force Systems co-~d. USAF AVLKT 31-OC55

at. ADDRESS (ity. Stae mid ZIP code) 10 SOURCI OP FUNDING NOS
PROGRAM PROJECT TASK WORK UNI1T

Wright-Patterson AFB, Ohio 45433 a LIMENT "a. NO. NO. o

__________________________van__ 7OIF 7500 52 01
11. TITLE fifeded Secinly Caif aeeiee

12. PERSONAL AWTHORIBI Jones, Larry

13a TYPE Of %EPORT 13. TIME COVE ME 14. OATE OF REPOR0T 1Yr. Me., D"I 1 PAGE CoUNT

Final Tecbztcal Report 22 Sept 1980 - 31 July 1985 1985 November Y4

16. SWIPPLEMENTARV NOTATION The computer software contained herein are theoretical and/or

ICAN Project Priority 6201 references that in no way reflect Air Force-owned or -developed

17 COlATI CODES it Susie CT TERMS tCamanemeon eg p Affeemneri ea" "&*at) by "C 04 m p..,

Oil PLO apou.p 11UE am

19. AISTRACT IrCo. amsoe em wm it deen', a"d ede afy by bloe* aneebere

This manual describes the program callable interface to the IISS
Virtual Terminal, the Virtual Terminal commands. and provides
terminal implementation information for programmers who wish to
add new terminal types to the system.

20 DIST Mi UT ION,&VAI LAS LIT V Of ABSTRACT 21 ASIACT SECURISTY Ce..ASPICATOI.

UNCLASSIPit Div"LIMITI D SAME AS OPT C: DTCU$M Unclassified

226 NAME OP 411P40111041. INDIVIDUAL 23D TBLEPWOfte 111110sf 22 OPPICE SvM606
Eieededeb Ame CeeaftWA/IT

L Dvid L. JIudson 515-255-6976 rALHT

DO FORM 1473,83 APR 6ooTION F o AN 73 99 sgom0o&.TI Unclassified
@NCvMTY CLASSIPICAeOt O TMIS PAGE

1. Title

Integrated Information Support System (ZISS)
Vol VIII - User Interface Subsystem
Part 11 - Virtual Terminal User Manual

A S D 86 0029
9 Jan 1986

i Accessiofl For

I~s GRA&I
DTIC TAB

Lhnannouni'ed 0
justificatia

Distribut-ionI

Avilability C odes
'Avail and/or

r, t special

UM 620144300B
1 November 1985

PREFACE

This user's manual covers the work performed under Air
Force Contract F33615-80-C-5155 (ICAM Project 6201). This
contract is sponsored by the Materials Laboratory, Air Force
Systems Command, Wright-Patterson Air Force Base, Ohio. It was
administered under the technical direction of Mr. Gerald C.
Shumaker, ICAM Program Manager, Manufacturing Technology
Division, through Project Manager, Mr. David Judson. The Prime
Contractor was Production Resources Consulting of the General
Electric Company, Schenectady, New York, under the direction of
Mr. Alan Rubenstein. The General Electric Project Manager was
Mr. Myron Hurlbut of Industrial Automation Systems Department,
Albany, New York.

Certain work aimed at improving Test Bed Technology has
been performed by other contracts with Project 6201 performing
integrating functions. This work consisted of enhancements to
Test Bed software and establishment and operation of Test Bed
hardware and communications for developers and other users.
Documentation relating to the Test Bed from all of these
contractors and projects have been integrated under Project 6201
for publication and treatment as an integrated set of documents.
The particular contributors to each document are noted on the
Report Documentation Page (DD1473). A listing and description
of the entire project documentation system and how they are
related is contained in document FTR620100001, Project Overview.

The subcontractors and their contributing activities were
as follows:

TASK 4.2

Subcontractors Role

Boeing Military Aircraft Reviewer.
Company (BMAC)

D. Appleton Company Responsible for IDEF support,
(DACOM) state-of-the-art literature

search.

General Dynamics/ Responsible for factory view
Ft. Worth function and information

models.

lii

UM 620144300B
1 November 1985

Subcontractors Role

Illinois Institute of Responsible for factory view
Technology function research (IITRI)

and information models of
small and medium-size business.

North American Rockwell Reviewer.

Northrop Corporation Responsible for factory view
function and information
models.

Pritsker and Associates Responsible for IDEF2 support.

SofTech Responsible for IDEFO support.

TASKS 4.3 - 4.9 (TEST BED)

Subcontractors Role

Boeing Military Aircraft Responsible for consultation on
Company (BAC) applications of the technology

and on IBM computer technology.

Computer Technology Assisted in the areas of
Associates (CTA) communications systems, system

design and integration
methodology, and design of the
Network Transaction Manager.

Control Data Corporation Responsible for the Common Data
(CDC) Model (CDM) implementation and

part of the CDN design (shared
with DACOM).

D. Appleton Company Responsible for the overall CDM
(DACOM) Subsystem design integration

and test plan. as well as part
of the design of the CDX
(shared with CDC). DACOX also
developed the Integration
Methodology and did the schema
mappings for the Application

Subsystems.

iv

UM 620144300B
1 November 1985

Subcontractors Role

Digital Equipment Consulting and support of the
Corporation (DEC) performance testing and on DEC

software and computer systems
operation.

McDonnell Douglas Responsible for the support and
Automation Company enhancements to the Network
(McAuto) Transaction Manager Subsystem

during 1984/1985 period.

On-Line Software Responsible for programming the
International (OSI) Communications Subsystem on the

IBM and for consulting on the
IBI".

Rath and Strong Systems Responsible for assistance in
Products (RSSP) (In 1985 the implementation and use of
became McCormack Y Dodge) the MRP II package (PIOS) that

they supplied.

SofTech, Inc. Responsible for the design and
implementation of the Network
Transaction Manager (NTM) in
1981/1984 period.

Software Performance Responsible for directing the
Engineering (SPE) work on performance evaluation

and analysis.

Structural Dynamics Responsible for the User
Research Corporation Interface and Virtual Terminal
(SDRC) Interface Subsystems.

Other prime contractors under other projects who have
contributed to Test Bed Technology, their contributing
activities and responsible projects are as follows:

Contractors ICAM Project Contributing Activities

Boeing Military 1701, 2201, Enhancements for IBM
Aircraft Company 2202 node use. Technology
(BMAC) Transfer to Integrated

Sheet Metal Center
(ISMC).

V

F!

UM 620144300B
1 November 1985

Contractors ICAM ProJect Contributing Activities

Control Data 1502, 1701 IISS enhancements to
Corporation (CDC) Common Data Model

Processor (CDMP).

D. Appleton Company 1502 IISS enhancements to
(DACOM) Integration Methodology.

General Electric 1502 Operation of the Test
Bed and communications
equipment.

Hughes Aircraft 1701 Test Bed enhancements.
Company (HAC)

Structural Dynamics 1502, 1701, IISS enhancements to
Research Corporation 1703 User Interface/Virtual
(SDRC) Terminal Interface

(UI/VTI).

Systran 1502 Test Bed enhancements.
Operation of Test Bed.

vi

UM 620144300B

1 November 1985

TABLE OF CONTENTS

Pakge

SECTION 1.0 INTRODUCTION................................... 1-1

SECTION 2.0 DOCUMENTS...................................... 2-1
2.1 Reference Documents......................... 2-1
2.2 Terms and Abbreviations..................... 2-2

SECTION 3.0 VIRTUAL TERMINAL COMMANDS..................... 3-1
3.1 General...................................... 3-1
3.2 Command Descriptions........................ 3-2
3.3 Input-Output Routines....................... 3-B

SECTION 4.0 TERMINAL IMPLEMENTATION....................... 4-i
4.1 Adding New Terminals........................ 4-1
4.2 General Purpose Device Driver............... 4-1
4.3 Special Case Device Driver.................. 4-2

APPENDICES

APPENDIX A VIRTUAL TERMINAL CHARACTER SET................. A-1
B COMMAND REFERENCE............................... B-1
C DEVICE DRIVER SUPPORT ROUTINES................. C-i
D DEVICE DRIVER INCLUDE FILES.................... D-1
E SAMPLE DEVICE DRIVER (DEC VT-1O0).............. E-1

vii

UM 620144300B
1 November 1985

SECTION 1

INTRODUCTION

This manual describes the program callable interface to the
Integrated Information Support System Virtual Terminal, the
Virtual Terminal commands, and provides terminal implementation
information for programmers who wish to add new terminal types
to the system. Although the program callable interface is NOT
supported in IISS Release 2.0, it will be supported in later
releases.-

This manual is intended for application and system
programmers working in the IISS environment.

1-1!

p. - V. . .

UM 620144300B
1 November 1985

SECTION 2

DOCUMENTS

2.1 Reference Documents

[1] Systran, ICAM Documentation Standards, IDS 150120000C,
15 September 1983.

[2] Digital, VAX-11 Architecture Handbook, Digital
Equipment Corp.. Maynard, MA, 1979.

[3] American National Standards Institute, Code for
Information Interchange, ANSI X3.4-1977, 9 June 1977.

[4] American National Standards Institute, Code Exteasion
Techniques for Use with the 7-bit Coded Character Set
of American National Standard Code for Information
Interchange, ANSI X3.41-1974, 14 May 1974.

[5] American National Standards Institute, Additional
Controls for Use With American National Standard Code
for Information Interchange, ANSI X3.64-1979, 18 July
1979.

[6] American National Standards Institute, Hollerith
Punched Card Code, ANSI X3.26-1980, 2 May 1980.

(7] Structural Dynamics Research Corporation. Report
Writer User Manual, UM 20144501 , 1 November 1985.

[8] Structural Dynamics Research Corporation, Application
Generator User Manual, UM 620144502 , 1 November 1985.

[9] Structural Dynamics Research Corporation, Text
Editor User Manual, UM 620144600B, 1 November 1985.

(10] Structural Dynamics Research Corporation, Form
Processor User Manual, UM 620144200B, 1 November 1985.

[11] Structural Dynamics Research Corporation, Form
Editor User Manual, UM 620144400B. 1 November 1985.

(12] Structural Dynamics Research Corporation. Virtual
Terminal Development Specification, DS 620144300B, 1

2-1

UN 620144300B
1 November 1985

November 1985.

2.2 Terms and Abbreviations

American Standard Code for Information Interchange:
(ASCII), the character set defined by ANSI X3.4 and used by
most computer vendors.

Application Interface: (AI), subset of the IISS User
interface that consists of the callable routines that are linked
with applications that use the Form Processor or Virtual
Terminal. The AI enables applications to be hosted on computers
other than the host of the User Interfacce.

Application Process: (AP), a cohesive unit of software that
can be initiated as a unit to perform some function or
functions.

Attribute: field characteristic such as blinking,
highlighted, black, etc. and various other combinatlions.
Background attributes are defined for forms or windows only.
Foreground attributes are defined for items. Attributes may be
permanent, i.e., they remain the same unless changed by the
application program, or they may be temporary, i.e., they remain
in effect until the window is redisplayed.

Communication Services: allows on host interprocess
communicatlion and inter-host communication between the various
Test Bed subsystems.

Computer Program Configuration Item: (CPCI), an aggregation
of computer programs or any of their discrete portions, which
satisfies an end-use function and is designed by the ICAM
Program Office for ICAM Configuration Management.

Device Drivers: (DD), software modules written to handle
I/0 for a specific kind of terminal. The modules map terminal
specific commands and data to a neutral format. Device drivers
are part of the UI Virtual Terminal.

Extended Binary Coded Decimal Interchange Code: (EBCDIC),
the character set used by a few computer vendors (notable IBM)
instead of ASCII.

Field: two-dimensional space on a terminal screen.

2-2

UM 620144300B
I November 1985

Integrated Information Support System: (IISS), a test
computing environment used to investigate, demonstate and
test the concepts of information management and information
integration in the context of Aerospace Manufacturing. The
IISS addresses the problems of integration of data resident on
heterogeneous data bases supported by heterogeneous computers
interconnected via a Local Area Network.

Logical Device: a conceptual device which, to an
application, is indistinguishable from a physical device and is
then mapped to part or all of a physical device.

Network Transaction Manager: (NTM), IISS subsystem that
performs the coordination, communication and housekeeping
functions required to integrate the Application Processes and
System Services resident on the various hosts into a cohesive
system.

Operating System: (OS), softawre supplied with a computer
which allows it to supervise its own operations and manage
access to hardware facilities such as memory and peripherals.

Physical Device: a hardware terminal.

User Interface: (UI), IISS subsystem that controls the
user's terminal and interfaces with the rest of the system. The
UI consists of two major subsystems: The User Interface
Development System (UIDS) and the User Interface Management
System (UIMS).

User Interface Management System: (UIMS), the run time UI.
It consists of the Form Processor, Virtual Terminal, Application
Interface and the User Interface Services.

User Interface Monitor: (UIM), part of the Form Processor
that handles messaging between the NTM and the UI. It also
provides authoriztion checks and initiates applications.

User Interface/Virtual Terminal Interface: (UI/VTI),
another name for the User Interface.

I2-

.
S.o

UM 620144300B
1 November 1985

Virtual Terminal: (VT), subset of the IISS User Interface
that performs the interfacing between different terminals and
the UI. This is done by defining a specific set of terminal
features and protocols which must be supported by the UI
software which constitutes the virtual terminal definition.
Specific terminals are then mapped against the virtual terminal
software by specific software modules written for each type of
real terminal supported.

Virtual Terminal Interface: (VTI). the callable interface
to the VT.

Window: dynamic area of a form in which predefined forms
may be placed at runtime.

Window Manager: a facility which allows the following to be
manipulated: size and location of windows, the device on which
an application is running, the position of a form within a
window. It is part of the Form Processor.

2-4

UM 620144300B
I November 1985

SECTION 3

VIRTUAL TERMINAL COMMANDS

3.1 General

The Virtual Terminal accepts two kinds of data: Graphic
(or printable) Characters which are displayed on the screen,
and Commands which affect the way in which Graphic Characters
are displayed.

The format of the following command descriptions is: the
command name and short description, the command syntax, and a
detailed description of the command. In the command syntax,
characters within angle brackets (e.g. (ESC,) indicate Control
Characters (codings depend on your system character set - see
Appendix A), Pn indicates a Numeric Parameter, Ps indicates a
Selective Parameter, an ellipsis (...) indicates additional
unspecified characters, and all other characters stand for
themselves.

Parameters are represented in ordinary human-readable
decimal form, with Numeric Parameters representing numbers
(such as a row number or the number of times to repeat a
function), and Selective Parameters standing for selections
from a list of options with multiple selections separated by
semicolons. Unless specified otherwise, Numeric Parameters
indicate the number of times to repeat the specified function,
omitted Numeric Parameters are taken to be 1, and omitted
Selective Parameters are taken to be 0.

*The Virtual Terminal screen consists of an arbitrary number
of rows numbered from 1 to n. and an arbitrary number of
columns numbered from I to m; the actual size is specified by
the Define Window command. The standard ordering of objects is
from top to bottom and left to right, with wrap-around from the
last object to the first. In the command descriptions, "next"
refers to this order, "previous" to Its reverse. For example,
from row 6 column 80 on an 80 character wide screen, the next

v character position is row 7 column 1, and the previous
character position is row 6 column 79.

In Forms Mode, any command whose effect is limited to a
single field (including Graphic Characters) will cause the
cursor to move to the next unprotected field before the command
takes effect if the cursor is In a protected field when the

3-1

UM 620144300B
I November 1985

command is received. If there are no unprotected fields
defined, the command is ignored.

An application program is only permitted to use the
following commands: Bell, Define Field, Erase Field, Record
Separator, Set Transmit State. The following commands may also
be used, subject to constraints: Define Window (window id not

specified), Erase Window (window id not specified), all cursor
positioning commands (position within logical device bounds).

The following commands are for internal use only and may not be
used under any circumstances: Define Window (window id
specified), Remove Window, Erase Window (window id specified).
Set Window, Window Precedence. All other commands may be used,
but there is no guarantee that the application will correctly
be constrained to the limits of its logical device.

3.2 Command Descriptions

Graphic Character

Causes the character to be displayed according to the graphic
rendition in effect at the cursor location and advances the
cursor to the next character position. This advancing may
possibly causing scrolling.

BEL - Sound Bell
,BEL,

Sounds an audible alarm at the terminal.

BS - Backspace
cBS,

Moves the cursor to the previous character position: if the
cursor is at the ieft margin, no action occurs.

HT - Horizontal Tab
4NT)

Moves the cursor to the next horizontal tab stop on the current
line or to the right margin if no more tab stops exist; in
Forms Mode, moves the cursor to the next field.

LF - Line Feed
tLF,

Moves the cursor down to the next line in the current column,
possibly scrolling the screen.

3-2• U

UM 620144300B
1 November 1985

FF - Form Feed
,FF,

Clears the screen and moves the cursor to the first unprotected
character position. In Forms Node, only unprotected areas of
the screen are erased.

CR - Carriage Return
,CR,

Moves the cursor to the left margin in the current line.

RS - Record Separator
,RS)

Used to indicate the end of a series of commands causing them
to be processed and the results displayed.

IND - Index
,ESC, D

Same as LF.

MEL - Next Line
,ESC, E

Same as CR followed by LF.

HTS - Horizontal Tab Set
,ESC, H

Sets a horizontal tab stop at the current column.

RI - Reverse Index
,ESC, N

Moves the cursor up to the previous line in the current column,
possibly scrolling the screen.

DCS - Device Control String
-ESC, P ... ESC, \

Transmits the characters between the escape sequences (...)

directly to the physical terminal without interpretation. This
may be used to activate special features of a particular
terminal, but It is the user's responsibility to insure that
the physical terminal is of the correct type.

STS - Set Transmit State
USC, S

Indicates that the currently selected window is to be enabled
for input. All unguarded fields are made enterable and a data
message will be sent when a function key is pressed.

3-3

UM 620144300B
1 November 1985

APC - Application Program Command
,ESC_ Pn cESC, \

Generated when a function key is pressed. The parameter is the
function key number (0 - n) which must not be omitted.
Function key zero is the "ENTER" key.

RIS - Reset to Initial State
,ESC, c

Resets the terminal to its initial state. The screen is
cleared, the cursor is positioned in the upper left corner, and
Forms Mode is reset.

REF - Refresh Screen
-ESC,

Retransmits the current screen contents to the terminal. Its
main uses are to recover from unsolicited messages or line
noise which have corrupted the screen contents, or to update
the terminal when In Deferred Display Mode.

ICH - Insert Character
CISC) [Pn a

Makes room for a character by shifting the rest of the line
(field in Forms Mode) one character position to the right;

characters shifted past the end of the line (field) are lost.
The cursor is left at the first inserted character position
(i.e. not moved).

CUU - Cursor Up
,ESC, [Pn A

Moves the cursor to the previous line in the current column.
but not past the top margin.

CUD - Cursor Down
,ESC, [Pn B

Moves the cursor to the next line in the current column, but
not past the bottom margin.

CUF - Cursor Forward
CISC, [Pn C

Moves the cursor to the next character position. but not past
the right margin.

CUB - Cursor Backward
,ESC- [Pn D

Moves the cursor to the previous character position, but not
past the left margin.

5-4

| ~ ~ .&x.Z-~~C,.> -

UN 620144300B
1 November 1985

CNL - Cursor Next Line
,ESC, [Pn E

Moves the cursor to the left margin of the next line. but not
past the bottom margin.

CPL - Cursor Previous Line
-ESC, [Pn F

Moves the cursor to the left margin of the previous line. but
not past the top margin.

CUP - Cursor Position
,ESC, [Pn ; Pn H

Moves the cursor to the specified position. The first
parameter is the row number, the second parameter is the column
number. If the second parameter is omitted, the semicolon may
be omitted as well

CHT - Cursor Horizontal Tab
,ESC, [Pn I

Moves the cursor to the next horizontal tab stop on the current
line or the right margin if no more horizontal tab stops exist.
In Forms Mode. moves the cursor to the next field.

ED - Erase Display
,ESC, [Ps J

Erases the screen according to the parameter:
0 - Erase from the cursor to the end of the screen

(inclusive)
1 - Erase from the beginning of the screen to the cursor

(inclusive)
2 - Erase the entire screen

The cursor is not moved. In Forms Mode, only unprotected areas
of the screen are erased.

EL - Erase Line
-ESC, [Ps K

Erases the current line according to the parameter:
0 - Erase from the cursor to the end of the line

(inclusive)
1 - Erase from the beginning of the line to the cursor

(inclusive)
2 - Erase the entire line

The curLor is not moved. In Forms Mode. only unprotected areas
of the screen are erased.

3-5

UN 620144300B
1 November 1985

IL - Insert Line
4ESC, [Pn L

Makes room for a line by shifting the rest of the screen down
one line; lines shifted past the bottom of the screen are lost.
The cursor is positioned at the first inserted line (i.e. not
moved).

DL - Delete Line
,ESC, [Pn N

Deletes the current line by shifting the rest of the screen up
one line.

EF - Erase Field
-ESC) [Ps N

Erases the current field according to the parameter:
0 - Erase from the cursor to the end of the field

(inclusive)
1 - Erase from the beginning of the field to the cursor

(inclusive)
2 - Erase the entire field

The cursor Is not moved.

DCH - Delete Character
,ESC, [Pn P

Deletes the current character by shifting the rest of the line
(field in Forms Node) one character position to the left.

CPR - Cursor Position Report
,ESC, [Pn . Pn R

Generated in reply to a cursor position request (see DSR). The
first parameter is the current row, the second parameter is the
current column

NP - Next Page
,ESC, [Pn U

Same as FF.

PP - Previous Page
,ESC, [Pn V

Same as FF.

ECH - Erase Character
,ESCI [Pn X

Erases the current character (the character is NOT deleted)
The cursor is not moved In Forms Mode, only a single field is
affected.

3-6

A , '% .. % '% ' .' ... '.....,. '..',....o,. , ,.,'*,

UM 620144300B
1 November 1985

CBT - Cursor Backward Tab
'ESC, [Pn Z

Moves the cursor to the previous horizontal tab stop in the
current line or to the left margin if no more horizontal tab
stops exist. In Forms Node, moves the cursor to the previous
field.

HPA - Horizontal Position Absolute
,ESC, [Pn '

Moves the cursor to the specified column in the current line.

HPR - Horizontal Position Relative
,ESC, [Pn a

Same as CUF.

VPA - Vertical Position Absolute
,ESC, [Pn d

Moves the cursor to the specified line in the current column.

VPR - Vertical Position Relative
,ESC, [Pn e

Same as CUD.

MVP - Horizontal and Vertical Position
,ESC, [Pn ; Pn f

Same as CUP.

TBC - Tab Clear
,ESC, [Ps g

Clears tab stops according to the parameter:
0 - Clear the horizontal tab stop at the cursor
3 - Clear all horizontal tab stops

SM - Set Mode
,ESC, [Ps h (standard modes)

-ESC, 9 ' Ps h (private modes)
Sets the indicated modes; standard and private modes can not be
mixed. No standard modes are currently supported. Allowable
private mode parameters are:

I - FRNN - Forms Node - When set, area qualifications are
enforced and reading the terminal results in a
full-screen formatted buffer, when reset, area
qualifications are not enforced and reads return
a single line or command at a time.

3-7

UM 620144300B
1 November 1985

3 - CTM - Control Transfer Mode - When set, indicates that
control sequences are to be returned to the
program; when reset, control sequences terminate
a read but are not returned. (Only effective
when not in Forms Node.)

4 - DDN - Deferred Display Node - When set, indicates that
writes are to affect only the internal buffer,
not the screen (a REF command should be sent to
update the screen); when reset, indicates that
writes affect both the internal buffer and the
screen.

MC - Media Copy
(ESC, [Ps i

Controls the transfer of data between the device and an
auxiliary input/output device:

0 - Print Screen

RN - Reset Mode
,ESC, [Ps 1 (standard modes)
,ESC, [9 Ps 1 (private modes)

Resets the indicated modes (see Set Mode); standard and private
modes can not be mixed.

SGR - Set Graphic Rendition
,ESC, [Ps m

Sets the specified Graphic Rendition:
0 - Normal (reset existing attributes)
1 - Bright or Bold
2 - Dim
4 - Underlined
5 - Slow Blink (less than 150 per minute)
6 - Fast Blink
7 - Reverse
8 - Concealed (not displayed)

The specified attributes are in effect from the cursor position
to the next SGR or the end of the current line, whichever comes
first. Note that the specified attributes are IN ADDITION to
the currently existing attributes unless Normal is specified.

DSR - Device Status Request
,ESC, C Ps n

Requests the indicated status:
6 - Report Cursor Position (via CPR)

3-8

d %

UM 620144300B
I November 1985

DAQ - Define Area Qualification
tESC- E Ps o

Sets the specified Area Qualification:
0 - No Qualification (reset existing qualifications)
I - Protected and Guarded
7 - Beginning of Field

The specified qualification is in effect from the cursor
position to the next DAQ or the end of the current line,
whichever comes first. Note that the specified qualifications
are IN ADDITION to the currently existing qualifications unless
No Qualification is specified. Area qualifications are only
enforced in Forms Mode. DAQ commands take up a single
character space on the screen which is displayed as a blank;
the cursor is moved to the next character position following a
DAQ command. When DAQ and SGR are used together, the SGR
command should be given first, followed by the DAQ command.
(The screen is completely protected and guarded unless other
qualifications are explicitly specified.)

WP - Window Precedence
,ESC, [Pn ... p

Sets the precedence of the specified windows. Each window is
in turn placed on top of all other existing windows. Thus, the
last window specified will ultimately be the top-most and all
specified windows will be on top of any unspecified windows.

RW - Remove Window
'ESC, [Pn r

Removes the specified window. If the window id is omitted, the
currently selected window is used.

SW - Select Window
tESC> [Pn s

Selects the specified window.

EW - Erase Window
ESC, [Pn u

Removes all windows and fields from the specified window. If
the window Id is omitted, the currently selected window is
used.

3-9

UM 620144300B
1 November 1985

DW - Define Window
tESC, [Pn ; Pn ; Pn ; Pn ; Pn ; Pn ; Pn ; Pn ; Pn ; Ps w

Defines a window within the currently selected window. The
first parameter is the window id. the second and third
parameters are the row and column within the selected window
for this window to be displayed, the fourth and fifth
parameters are the display width and depth, the sixth and
seventh parameters are the offsets of the first displayed row
and column from the actual first row and column, the eighth and
ninth parameters are the actual width and depth, and the tenth
parameter is the window attributes as per Set Graphic
Rendition.

DF - Define Field
,ESC, [Pn ; Pn ; Pn ; Pn ; Ps ; Ps ; x

Defines a field within the currently selected window. The
first and second parameters are the row and column within the
selected window for the field to be displayed, the third and
fourth parameters are the field width and depth, the fifth
parameter is the "guarded" flag which must consist of exactly
one selection (unless it and all following parameters are
omitted) as per Define Area Qualification (Beginning of Field
is implied and should not be specified), and the sixth
parameter is the field attributes as per Set Graphic Rendition.
The data to be displayed in the field must immediately follow
the Define Field command in the same buffer (see PUTVTI,
below).

3.3 Input-Output Routines

Four routines are provided for direct Virtual Terminal
input and output. The calling sequences and parameter
definitions follow.

INITVT

CALL "INITVT".

This routine performs all necessary initialization in
preparation for using the Virtual Terminal. Specifically, it
initiates Form Processor Bypass mode wherein the Form Processor
no longer interprets Virtual Terminal messages but simply
passes them back to the application.

3-10

UM 620144300B
1 November 1985

GETVTI

CALL "GETVTI" USING BUFFER, MAX-LEN, ACT-LEN.

Inputs

MAX-LEN - PIC S9(5) COMP - maximum length to read.

Outputs

BUFFER - PIC X(N) - data read from terminal.
ACT-LEN - PIC S9(5) COMP - length of data read.

This routine performs a read from the Virtual Terminal.

In forms mode, the returned buffer consists of a Set Window
command followed by Define Field commands for each field in the
window which has been modified since the last read. This is
followed by additional Set Widow and Define Field commands for
nested windows. Finally, a Cursor Position Report command
giving the cursor position when the terminating function key
was pressed and an Application Program Command command
specifying which function key was pressed terminate the buffer.

If not in Forms Mode, the returned buffer consists of all the
printable characters entered followed (if in Control Transfer
Mode) by the control sequence which terminated the input.

If an inquiry (e.g. DSR) was performed prior to reading, the
returned buffer contains only the reply reguardless of Forms
Mode and Control Transfer Mode.

PUTVTI

CALL "PUTVTI" USING BUFFER, ACT-LEN.

Inputs

BUFFER - PIC X(n) - Data to be written.
ACT-LEN - PIC S9(5) COMP - Length of data to write.

This routine performs a write to the Virtual Terminal. This
routine may be called multiple times to send multiple buffers
of commaands to the Virtual Terminal. In any case, the final
buffer must end with a Record Separator command in order to
process the preceding commands. See above for restrictions on
the commands which may be contained in BUFFER.

3

~3-11

'p

UM 620144300B
1 November 1985

TERMVT

CALL "TERMVT".

This routine terminates the Virtual Terminal. It terminates
Form Processor Bypass mode, causing the Form Processor to once
again interpret Virtual Terminal messages and refreshes the
screen to eliminate any disruption caused by the Virtual
Terminal output.

3-12

............. .-......................

UM 620144300B
I November 1985

SECTION 4

TERMINAL IMPLEMENTATION

4.1 Adding New Terminals

The translation from Virtual Terminal commands to commands
for a specific terminal (and vice versa) is performed by a
program known as a device driver. Adding a new terminal is
accomplished simply by writing a device driver for the terminal
and making it known to the system. Since all device drivers
perform the same basic functions, most of the necessary
routines are already written, and only a few will need to be
written for a particular terminal. (Since the currently
existing device drivers are written in the C programming
language, a large number of utility and support functions exist
for device drivers written in C. For this reason, this
discussion will focus on device drivers which are being written
in C; this should not be interpreted as meaning that device
drivers could not be written in another language, only that
doing so would be significantly more work.)

Two different types of device drivers will be discussed.
First, we will consider a general purpose device driver which
can support any type of terminal. Second, we will consider the
special case of a terminal which does not support forms and
does not perform local echoing (or allows local echoing to be
disabled). It should be noted that all of the currently
supported terminals fall into this category.

4.2 General Purpose Device Driver

A general purpose device driver must contain four routines:
INITVT, GETVTI, PUTVTI, and TERMVT.

GETVTI and PUTVTI (which have already been discussed)
accept Virtual Terminal commands and translate them Into

commands for a particular device and vice versa. All Virtual
Terminal commands must be supported, even if this requires
simulation in software. (It should be noted, however, that it
is not necessary to allow all Virtual Terminal commands to be
entered by the user. It is up to the implementor to determine
a reasonable subset to be supported, but the subset should at
least include the cursor movements, forward and backward tab,
20 function keys including the enter key, screen refresh, and

4-1

, .- - ,.

UM 620144300B
I November 1985

delete character.)

The only allowable exceptions to this are the Bell, Media
Copy, and Set Graphic Rendition commands. The Bell and Media
Copy commands must be recognized correctly, but need not
produce any effect if the terminal does not have an audible
alarm or printer. Visual attributes should be simulated as
well as possible; some guidelines follow.

If the terminal only has two brightness levels, BOLD should
be supported with DIM being the same as NORMAL; if only a
single brightness level exists, BOLD, DIM, and NORMAL should
all be the same. If the terminal has only a single blink
speed, it should be used for both FAST BLINK and SLOW BLINK;
if blink is not supported, FAST BLINK and SLOW BLINK may be
ignored. If only a single highlight is supported (e.g. reverse
video, underline, etc.), it should be used for both REVERSE and
UNDERSCORE; if no highlights are supported, both REVERSE and
UNDERSCORE should be simulated by a software underscore (blanks
in the field are replaced by underscores). CONCEALED may be
simulated by blanking the field on the screen as necessary.

The Window Manager portion of the Device Driver processes
the Set Transmit State, Window Precedence, Define Window,
Remove Window, Select Window, Erase Window, and Define Field
commands. It is intended to be portable and used in all Device
Drivers without change. Thus, these commands do not need to be
supported by new Device Drivers. (If, however, the terminal
in question supports windowing, it may be desirable to
implement these commands as part of the device-specific part of
the driver.)

INITVT and TERMVT (which have also been discussed
previously) are called once at startup and termination
respectively to initialize the device driver and perform
cleanup. The initialization usually consists of opening a
communication channel to the terminal and calling PUTVTI with a
Reset to Initial State command to reset the terminal. The
cleanup usually consists of sending commands to the terminal to
return it to the normal state of terminals on the system (such
as setting normal modes or tab stops) and clear the screen, and
closing the communication channel to the terminal.

4.3 Special Case Device Driver

If a terminal supports forms, writing a general purpose

device driver for it should not be very difficult. However, a

4-2

,°

UM 620144300B
1 November 1985

terminal which does not support forms requires most functions
to be simulated in software, requiring a very complex device
driver. Since all of the terminals which are currently
supported fall into this category, routines exist which make
writing a device driver for this type of terminal much easier.
(However, it should be noted that supporting this type of
terminal requires being able to perform character at a time I/O
without echo. This is not possible on some computer systems,
making support impossible.) These support routines are
documented in Appendix C; many unsubstantiated references to
them will be made in the following text.

Supporting a new terminal of this type requires writing six
routines: TRMINI, TRMCHK, TRMGET, TRMPUT, TRMFLS, and TRMEND.
TRMINI is called once to establish communication with the
terminal. This is usually done with a call to TBOPEN. The
calling sequence for TRMINI is:

trmini(tname)

TNAME is the terminal name passed in to INITVT converted to a C
string.

TRMCHK is called to check for terminal input that must be
processed. The calling sequence for TRMCHK is:

trmchk()

It returns TRUE or FALSE depending on whether there are
keyboard characters to be processed or not.

TRMGET and TRMPUT are called to get commands from and put
commands to the terminal. TRMGET usually calls TRMPUT as well
in order to echo the user input. The calling sequences for
TRMGET and TRMPUT are:

trmget(cmd)

trmput(cmd)

CMD is a command In internal form.

TRMFLS is called to insure that all output has been
displayed (any buffers should be flushed). The calling
sequence for TRMFLS is:

trmfls()

4-3

I .A • , -, .

UM 620144300B
1 November 1985

TRN) is called once to terminate communications with the
terminal. The calling sequence for TRNEND is:

trmend()

4-4

~~5.I -A - A --

UM 620144300B
1 Noveuber 1985

APPENDIX A

VIRTUAL TERMINAL CHARACTER SET

ASCII EBCDIC ASCII EBCDIC
Char Hex Oct Dec Hex Oct Dec Char Hex Oct Dec Hex Oct Dec

,NUL, 00 000 0 00 000 0 .SP 20 040 32 40 100 64
SOH, 01 001 1 01 001 1 ' 21 041 33 4F 117 79
'STXo 02 002 2 02 002 2 22 042 34 7F 177 127
,ETX, 03 003 3 03 003 3 * 23 043 35 7B 173 123
EOT, 04 004 4 37 067 55 s 24 044 36 5B 133 91
'ENQ, 05 005 5 2D 055 45 % 25 045 37 6C 154 108
'ACK, 06 006 6 2E 056 46 v 26 046 38 50 120 80
(BEL, 07 007 7 2F 057 47 27 047 39 7D 175 125
BS' 08 010 8 16 026 22 (28 050 40 4D 115 77
,HT, 09 011 9 05 005 5) 29 051 41 5D 135 93
,LF, OA 012 10 25 045 37 * 2A 052 42 5C 134 92
,VT, OB 013 11 OB 013 11 2B 053 43 4E 116 78
,FF, OC 014 12 OC 014 12 . 2C 054 44 6B 153 107
,CR, OD 015 13 OD 015 13 - 2D 055 45 60 140 96
,SO, OE 016 14 OE 016 14 2E 056 46 4B 113 75
,SI, OF 017 15 OF 017 15 / 2F 057 47 61 141 97
,DLE' 10 020 16 10 020 16 0 30 060 48 FO 360 240
,DCIl 11 021 17 11 021 17 1 31 061 49 FI 361 241
,DC2, 12 022 18 12 022 18 2 32 062 50 F2 362 242
,DC3, 13 023 19 13 023 19 3 33 063 51 F3 363 243
tDC4, 14 024 20 3C 074 60 4 34 064 52 F4 364 244
,NAK, 15 025 21 3D 075 61 5 35 065 53 F5 365 245
,SYN, 16 026 22 32 062 50 6 36 066 54 F6 366 246
ETB, 17 027 23 26 046 38 7 37 067 55 F7 367 247
,CAN, 18 030 24 18 030 24 8 38 070 56 F8 370 248
qEM, 19 031 25 19 031 25 9 39 071 57 P9 371 249
,SUB) IA 032 26 3F 077 63 - 3A 072 58 7A 172 122
,ESC, IB 033 27 27 047 39 3B 073 59 5E 136 94
qFS, IC 034 28 IC 034 28 3C 074 60 4C 114 76
40S) ID 035 29 ID 035 29 - 3D 075 61 7E 176 126
qRS) IE 036 30 IE 036 30 3E 076 62 6E 156 110
,US, IF 037 31 IF 037 31 9 3F 077 63 6F 157 111

A-I

U.e

014-omv WEW Iy .win wj p- F

UN 620144300B
1 November 1985

ASCII EBCDIC ASCII EBCDICChar Hex Oct Dec Hex Oct Dec Char Hex Oct Dec Hex Oct Dec

& 40 100 64 7C 174 124 60 140 96 79 171 121A 41 101 65 CI 301 193 a 61 141 97 81 201 129
B 42 102 66 C2 302 194 b 62 142 98 82 202 130
C 43 103 67 C3 303 195 c 63 143 99 83 203 131D 44 104 68 C4 304 196 d 64 144 100 84 204 132E 45 105 69 C5 305 197 e 65 145 101 85 205 133
F 46 106 70 C6 306 198 f 66 146 102 86 206 134G 47 107 71 C7 307 199 g 67 147 103 87 207 135H 48 110 72 C8 310 200 h 68 150 104 88 210 136
I 49 Ill 73 C9 311 201 1 69 151 105 89 211 137
. 4A 112 74 Dl 321 209 J 6A 152 106 91 221 145K 4B 113 75 D2 322 210 k 6B 153 107 92 222 146
L 4C 114 76 D3 323 211 1 6C 154 108 93 223 147
M 4D 115 77 D4 324 212 a 6D 155 109 94 224 148
N 4E 116 78 D5 325 213 n 6E 156 110 95 225 149
0 4F 117 79 D6 326 214 o 6F 157 111 96 226 150
P 50 120 80 D7 327 215 p 70 160 112 97 227 151Q 51 121 81 D8 330 216 q 71 161 113 98 230 152
R 52 122 82 DQ 331 217 r 72 162 114 99 231 153
S 53 123 83 E2 342 226 s 73 163 115 A2 242 162T 54 124 84 E3 343 227 t 74 164 116 A3 243 163
U 55 125 85 E4 344 228 u 75 165 117 A4 244 164V 56 126 86 E5 345 229 v 76 166 118 A5 245 165
w 57 127 87 E6 346 230 w 77 167 119 A6 246 166
X 58 130 88 E7 347 231 x 78 170 120 A7 247 167
Y 59 131 89 E8 350 232 y 79 171 121 A8 250 168
Z 5A 132 90 E9 351 233 z 7A 172 122 A9 251 169[5B 133 91 4A 212 74 { 7B 173 123 CO 300 192\ 5C 134 92 EO 340 224 1 7C 174 124 6A 152 106

5D 135 93 5A 132 90) 7D 175 125 DO 320 208
5E 136 94 5F 137 95 - 7E 176 126 Al 241 161
5F 137 95 6D 155 109 DEL, 7F 177 127 07 007 7

A-2

UM 620144300B
1 November 1985

APPENDIX B

COMMAND REFERENCE

For each function the key sequence. internal function
identifier, command abbreviation, and command description are
given. Tables of selective parameters follow the function
definitions.

Function Definitions

Control Characters

Ctrl-G 0007 BEL Sound Bell
Ctrl-H 0008 BS Backspace
Ctrl-I 0009 HT Forward Tab
Ctrl-J 0010 LF Line Feed / New Line
Ctrl-L 0012 FF Form Feed
Ctrl-M 0013 CR Carriage Return
Ctrl-[ESC Character Set Extension (see following)
Ctrl-- 0030 RS Record Separator
-ESCD 1004 IND Index
,ESCE 1005 NEL Next Line
,ESCH 1008 HTS Horizontal Tab Set
-ESCH 1013 RI Reverse Index
.ESCP 1016 DCS Device Control String
ESCS 1019 STS Set Transmit State
ESC,[CSI Control Sequence Introducer (see following)
,ESC,\ 1028 ST String Terminator
,ESC' - 1031 APC Application Program Command (function keys)
-ESC,c 1035 RIS Reset to Initial State
,ESC,9 4000 REF Refresh Screen (private)

Control Sequences ((CSI, ..)

Pn @ 3000 ICH Insert Character
Pn A 3001 CUU Cursor Up
Pn B 3002 CUD Cursor Down
Pn C 3003 CUF Cursor Forward
Pn D 3004 CUB Cursor Backward
Pn E 3005 CNL Cursor Next Line
Pn F 3006 CPL Cursor Preceding Line
Pn;Pn H 3008 CUP Cursor Position
Pn I 3009 CHT Cursor Horizontal Tab
Ps J 3010 ED Erase Display
Ps K 3011 EL Erase Line

1B%a, B-I1

'p
'p

* - z .. . ° ,°.*.- .. --*. &° F .- °..:< - -.-- ... - ... **-.. - . . ; ' ' ' "

UM 620144300B
1 November 1985

Pn L 3012 IL Insert Line
P1 N 3013 DL Delete Line
Ps N 3014 EF Erase Field
Pn P 3016 DCH Delete Character
Pn;Pn R 3018 CPR Cursor Position Report
PA U 3021 NP Next Page
PA V 3022 PP Preceding Page
Pn X 3024 ECH Erase Character
Pn Z 3026 CBT Cursor Backward Tab
Pn 3032 HPA Horizontal Position Absolute
Pn a 3033 HPR Horizontal Position Relative
Pn d 3036 VPA Vertical Position Absolute
Pn e 3037 VPR Vertical Position Relative
Pn.Pn f 3038 HVP Horizontal and Vertical Position
Ps g 3039 TBC Tab Clear
Ps h 3040 SM Set Mode
Ps 1 3041 MC Media Copy
Ps 1 3044 R Reset Mode
Ps a 3045 SGR Set Graphic Rendition
Ps n 3046 DSR Device Status Request
Ps o 3046 DAQ Define Area Qualification
Pn ... p 3047 VP Window Precedence
Pm r 3049 RW Remove Window
Pn s 3050 SW Set Window
Pn u 3052 EW Erase Window
Pn w 3054 DW Define Window
Pn x 3055 DF Define Field
" Ps h 4040 SPM Set Private Mode (private)
9 Ps 1 4044 RPM Reset Private Mode (private)

Device Control Strings (,DCS ST.)

CharacterE to be sent to terminal without interpretation

Application Program Commands (APC ST

Decimal representation of function key number

Selective Parameter Tables

Erase Parameters

0 - Current Position to End of Area (inclusive)
1 - Beginning of Area to Current Position (inclusive)
2 - Entire Area

B-2

it

620144300B
1 November 1985

Tab Clear Parameters

0 - Horizontal Tab at Current Position
3 - All Horizontal Tabs

Node Parameters

none

Private Mode Parameters

1 - FRMM Form Mode
3 - CTM Control Transfer Mode
4 - DDM Deferred Display Mode

Media Copy Parameters

0 - Print Screen

Graphic Rendition Parameters

0 - Default
I - Bright
2 - Dim
4 - Underscore
5 - Slow Blink
6 - Fast Blink
7 - Reverse
8 - Concealed

Device Status Request Parameters

6 - Report Current Position (via CPR)

Area Qualification Parameters

0 - No Qualification
I - Guarded
7 - Set Tab Stop (field delimiter)

.- 3.5,

, ' ./.4''5- ., ', ' ' ' . . ', ' - t - ".. . " " ';

UM 620144300B
1 November 1985

APPENDIX C

DEVICE DRIVER SUPPORT ROUTINES

TERMIO. H

NAME
* termlo - terminal i/o package
* Written: 11-MAY-1983 15:54:05
* Revised: 13-SEP-1983 12:24:19

£ DESCRIPTION
* This package provides immediate, character at a time i/o

from a terminal (i.e, does not collect an edited line
S like stdio)

* For details on the supported functions, see the
* individual function descriptions.

" NAME
" topen - open terminal channel
0

* SYNOPSIS
* #include termio.h,

• TERM *topen(device)
• char *device;

* DESCRIPTION
• topen opens the terminal specified by device for terminal
• 10

• device is a pointer to a string containing the device
* name

C-1

".,, ,;'''''.-.".., ;. .,-..-:,. .- ,.-:.. .. '.'/..,,',*, ,'.'.' ,-, - ..-...-..-. ::; :? Z : -

UN 620144300B
1 November 1985

/* NAME
tbopen - open buffered terminal channel

* SYNOPSIS
* #include (termio.h,

* TERM *tbopen(device, bufsiz, nbuf)
* char *device;
* int bufsiz, nbuf;
* DESCRIPTION

* tbopen opens the terminal specified by device for
buffered terminal i/o.

* (Only the output is buffered, not the input.)

* device is a pointer to a string containing the device
* name.
* bufsiz is the buffer size in characters.
* nbuf is the number of buffers to allocate.

* If nbuf (or bufsiz) is zero, the terminal is opened
* unbuffered.
,/

I s NAME
* tgetc - get character

* SYNOPSIS
* #include ,termio.h,
*

* char tgetc(term)
* TERM *term;

* DESCRIPTION
* tgetc returns the next character typed at the specified
* terminal.
,/

C-2

UM 620144300B
1 November 1985

/s NAME

* tgetct - get character (transparent)

* SYNOPSIS
* *include ,termio.h,

* char tgetct(term)
* TERM *term;

* DESCRIPTION

* tgetct returns the next character typed at the specified
* terminal without processing special control characters.
* Note that characters already in the type-ahead buffer may
* have been subject to special processing.
*/

/* NAME
* tungetc - unget character

* SYNOPSIS
8 *include ,termio.h,

8 char tgetct(c. term)
8 char c;
8 TERM *term;

* DESCRIPTION
8 tungetc returns the specified character to the specified
* terminal so that the next tgetc or tgetct call will

return it. Only a single push-back is allowed.
8/

/ NAME
8 tputc - put character

8 SYNOPSIS
* #include (termio.h,

void tputc(c, term)
* char c;
* TERM *term;

8 DESCRIPTION
8 tputc outputs the specified character to the specified
8 terminal.

C-3

i'.I ~ ' ~ 'P~ ~ '~ "~ ~ .~s

UM 620144300B
1 November 1985

/* NAME
* tputct - put character (transparent)*

SYNOPSIS
* #include (termio.h)

* void tputct(c, term)
char c;

* TERM *term;

* DESCRIPTION
* tputct outputs the specified character to the specified
* terminal without processing special control characters.
*/

/s NAME
tflush - flush terminal buffer

* SYNOPSIS
* ~include (termio.h)

void tflush(term)
* TERM *term;

* DESCRIPTION
* tflush empties the specified terminal's output buffer.
*/

/* NAME
* tflusht - flush terminal buffer (transparent)

* SYNOPSIS
*include 'termio.h,

void tflusht(term)
TERM *term;

* DESCRIPTION
tflusht empties the specified terminal's output buffer
without interpreting special control characters.

C-4

UM 620 144300B
1 November 1985

/* NAME
* tclose - close terminal

*SYNOPSIS

* *include termio.h,

* void tclose(term)
* TERM * term;

*DESCRIPTION

* tclose closes the specified terminal.

/* NAME
* ttrans - set transparent mode

*SYNOPSIS

* include (termio.h)

* void ttrans(term)
* TERM *term;

*DESCRIPTION

ttrans places the terminal in transparent mode. In this
* mode, all special characters (ctrl-y, ctrl-c, ctrl-s,
* ctrl-q, ctrl-o, ctrl-r, and ctrl-t) are treated as data
* and returned by tgetc.

/* NAME
'I * tntrans - reset transparent mode

*SYNOPSIS

#i*nclude 'termio.h,

* void tntrans(term)
* * TERM *term;

*DESCRIPTION
* tntrans cancels transparent mode set by ttrans.

0-5

.~~s.~ %.. .

VWWWWWWrWWWV~WWWW 7, ~iP " ~' \ ~J ~P

UM 620144300B
1 November 1985

/* NAME
* tcheck - check for input

*SYNOPSIS

include 'termio.h)

* void tcheck(term)
* TERM *term;

*DESCRIPTION

* tcheck returns the number of characters in the type-ahead
* buffer.

I' NAME
* tpurge - purge typeahead

*SYNOPSIS

include (termio.h)

* void tpurge(term)
* TERM *term;

*DESCRIPTION

* tpurge removes all characters from the typeahead buffer.

/* NAME
* tgetnm - get device name

*SYNOPSIS

include <termio.h,

* char *tgetnm(dev)
* char *dev;

*DESCRIPTION

* returns the physical device name associated with the
* specified logical device name

C-6

UM 620144300B
1 November 1985

TPUTS.C

/* NAME
* tputs - Terminal PUT String
* Written: 3-JUN-1983 10:14:03
* Revised: 24-AUG-1983 09:43:27

* SYNOPSIS

* void tputs(s, chan)
* char *s;
* TERM *chart;

* DESCRIPTION
* Writes the specified string to the specified terminal.
*/

DOSCREEN.C

/* NAME
* doscreen - DO command to internal SCREEN

Written: 25-MAY-1983 09:53:08
* Revised: 13-SEP-1983 10:40:48"*
* SYNOPSIS
* *include "screen.h"

* int doscreen(cmd)
* struct command *cmd;

* DESCRIPTION
* Executes cmd on the internal screen and fixes up its
* parameters.
* Returns -1 for errors, 0 for no action. 1 for normal
* command, and 2 for move the cursor and retry.
*/

C-7

UM 620 144300B
1 November 1985

APPENDIX D

DEVICE DRIVER INCLUDE FILES

SCREEN .H
/* NAME

* screen.h - internal SCREEN definitions
* Written: 19-MAY-1983 14:18:12
* Revised: 10-JAN-1985 07:05:24 - SCWEHRMAN

*DESCRIPTION

* Defines symbols, externals. etc. for the internal screen
* buffer.

#ifndef P05

*define HTABSIZ maxx
*define DSRSIZ 7

*define POS(y. x) ((x)+(y)*maxx)
*define ROW(pos) ((pos)/maxx)
*define COL(pos) ((pos)%maxx)

extern mnt maxx, maxy, curpos, maxpos. chgmax, chgmin;

extern char *screen;

struct attrI
*define FLAG 0

bits gr;
*define BOLD 1
*define DIM 2
*define UNDR 4
*define SLBL 5
*define FABL 6
*define REV 7
*define NDSP 8
*define GRSIZ 9

bits aq;
*define PROT 1
*define HTAB 7
*define HDFY 15
*define AQSIZ 16

extern struct attr *attrib;

D-1

UM 620144300B
1 November 1985

extern struct attr DEFATR;

extern BITTYP *htab;

struct modes (
*define GATM 1
#define KAM 2
*define CRM 3
#define IRM 4
*define SRTM 5
*define ERM 6
*define VEM 7
#define HEM 10
*define PUM 11
*define SRM 12
*define FEAM 13
*define FETM 14
*define MATM 15
*define TTM 16
#define SATM 17
*define TSN 18
*define EBM 19
*define LNM 20
*define NSMODE 21

BITSTR(smode, NSMODE);
*define FRMM 1
*define FESM 2
#define CTM 3
*define DDM 4
*define NPMODE 5

BITSTR(pmode, NPMODE);
1;

extern struct modes vti;

extern bool xmit;

*endif

D-2

UM 620144300B
1 November 1985

/' NAME
* functs.h - FUNCTion definitionS
* Written: 24-AUG-1983 09:49:37
* Revised: 9-NAY-1985 10:31:48 - WEHRMAN
S

- DESCRIPTION
* Defines the mnemonic virtual terminal command functions.
* And defines structure for parsing vti message buffer.
*1

*ifndef FUNCFLAG
*define FUNCFLAG 1

*define BEL 7
*define BS 8
*define HT 9
*define LF 10
*define FF 12
*define CR 13
*define RS 30
#define US 31
*define IND 1004
*define NEL 1005
*define HTS 1008
*define RI 1013
*define DCS 1016
#define STS 1019
*define ST 1028
*define APC 1031
*define RIS 1035
*define ICH 3000
*define CUU 3001
*define CUD 3002
* *define CUF 3003
*define CUB 3004
*define CNL 3005
*define CPL 3006
*define CUP 3008
*define CHT 3009
*define ED 3010
*define EL 3011
*define IL 3012
*define DL 3013
*define EF 3014
*define DCH 3016
*define CPR 3018
*define NP 3021
*define PP 3022

D-3

4.

4 . - ° - Q . . , ' ' • ." t ° ."." . . q •

UM 620144300B
1 November 1985

#define ECH 3024
#define CBT 3026
#define HPA 3032
*define HPR 3033
#define VPA 3036
#define VPR 3037
#define HVP 3038
#define TBC 3039
#define SM 3040
*define MC 3041
*define RM 3044
#define SGR 3045
*define DSR 3046
#define DAQ 3047
#define WP 3048
*define RW 3050
#define SW 3051
#define EW 3053
*define DW 3055
#define DF 3056
#define REF 4000
*define SPF 4040
#define RPM 4044

typedef struct command(
int funct, maxparm, nparm, parHI;
) CMD;

#define BLDCMD(n) structfint funct, maxparm, nparm, paru~n];)

extern bool pass_thru;
*endif

D-4

Mlw f I w, ,

UM 620144300B
1 November 1985

APPENDIX E

SAMPLE DEVICE DRIVER (DEC VT-100)

*define PRINTER "CI600.C"

*ifndef NDEBUG
*include (stdio.h,
tendif

/* NAME
* vtlO0 - vtlOO terminal driver routines
*Written: 25-MAY-1983 11:32:20
' Revised: 2-AUG-1985 13:41:22 - JONES
*

8 DESCRIPTION
Device dependent modules for the DEC VT1O0 device driver.

, */

*include (stdtyp.h,
*include Lctype.h>
*include termio.hy
*include bits.h,
*include ,screen.h,
*include functs.h,
*include (trmrtn.h,

#define BUFSIZ 512
*define BUFNUM 2

static TERM *chan;
static int termpos, pendpos;

static void movcur(;
static void setatr();
void trmput();

E
4.

~E-I1

.......................

UK 620144300B
1 November 1985

1. NAME
* truini - TeRMinal INItialize

*SYNOPSIS

* void trmlnl(tnaue)
char *tname;

aDESCRIPTION

* Opens the terminal specified by tname and initializes it.

void traini(tname)
char *tname;

chan - tbopen(tname, BUFSIZ. BUFNUMf);
* ifdef PRINTER

prnlni(tname);
0 endif

E-2

UM 620144300B
I November 1985

/0 NAME
truend - TeRMinal END

a

* SYNOPSIS
* void truend()
a

* DESCRIPTION
* Resets the currently open terminal and closes it.
6/

void trmend(

register int i;

* ifdef PRINTER
prnend();

* endif
for (i - 9; i , 80; i += 8) tputs("\3318C\33H". chan);
tputs("\33,\r", chan);
tclose(chan);

E-

E-3

N

UM 620144300B
1 November 1985

/0NAME
* trnfis - TeR.Minal FLuSh

SYNOPSIS
* void trufls()

*DESCRIPTION
* Flush any terminal buffers.

void trnfls(

if (pendpos - 0) movcur(pendpos);
if ('xuit) tflush(chan);

E-4

UM 620144300B
1 November 1985

/ NAME
* trmchk - TeRMinal CHecK
*

* SYNOPSIS

* int trmchk()

* DESCRIPTION
* This module returns the number of characters in the

type-ahead buffer.

SI
int trmchk()

return tcheck(chan);
E!4

E-

S. e . •, " " 'r .. '''t.'' .. -.- " ., "''-,- -- ;''' .- ,,.,. '.. .' v ... ' .
*4

UN 620144300B
1 November 1985

/* NAME
* truget - TeRMinal GET
*

* SYNOPSIS

void trmget(cmd)
S struct command *cmd;

* DESCRIPTION
* Gets the next command from the terminal and converts it to

internal form.
*/

void trmget(cmd)
struct command *cmd;

register char c;
register int num, i;
static BLDCMD(2) curcmd - (CUP, 2, 2, 0, 0);

#ifndef NDEBUG
if (termpos !- curpos)

I
printf("\n Sync error (trmget): termpos = %d, curpos
- %d (< n"

termpos, curpos);
getchar(;I

#endif

if (xmit) tpurge(chan);

if (isprint(c = tgetc(chan))) /* printable 5/{
cmd-,funct - 0;
cmd-,nparm = 1;
cmd-,parm[O] = c;)

else if (c != '\33') /* control char */{
if (c -= '\22' i c == '\27') cmd-funct REF;
else if (c == '\177') cmd-,funct - DCH;
else cmd-)funct = c;
cmd-,nparm = 0;

E

E -6

UM 620144300B
1 November 1985

else switch (c = tgetc(chan))

case '0': 1* APC *
cmd-'funct = APC;
cmd-'nparm = 1;
cmd-)parm[0] = 1;
switch (c = tgetc(chan))

cae(' m-prmO ;bek
case 'P': cmd->parm[O] = 0; break;
case 'Q': cmd-parm[0] = 1; break;
case 'R' : cmd-parm[Q] = 2; break;
case 'S' : cmd-parm[Q] = 4; break;
case 'w' : cmd->parm[O] = 4; break;
case '': cmd->parm[0] = 5; break;
case 'y' : cmd->parm[0) = 6; break;
case 'm': cmd->parm(0] = 7; break;
case 'in': cmd-,parm[0] = 8; break;
case '': cmd-parm[0] = 90; break;
case '': cmd-parm[0] = 10; break;
case 'v': cmd-)parm[O] = 12; break;
case 'q': cmd-parm[O] = 12; break;
case '': cmd-parm[0] - 14; break;
case 's': cid->parm[O] = 14; break;
case 's': cmd-'parm[0] = 15; break;
case '': cmd-parm[O] = 16; break;
case 'Ai': cmd-parm[0] = 17U; break;

.3case 'B': cmd-funct - CUU; break;
case 'B': crd-,funct = CUD; break;
case 'C' : cmd->funct = CUF; break;

break;
case '\t': /* back tab ~

cmd-)funct =CBT;
cmd->nparm = 1;
cmd-'parm[O] = 1;
break;

case '\12' : /* erase end of field ~
cmd-'funct =EF;
cind-- nparm =0;
break;

case '\177' : /* insert/overstrike mode
cmd-'funct -tbit(&?vti.smode, NSMODE. IRM) ? RH : SM;
cmd->nparm = 1;
cid->parm[0J IRM;
break;

E-7

UM 620 144300B
1 November 1985

/* function keys */
case '1': case '2': case '3': case '4': case '5'.

CASE '6': CASE '7': CASE '8': CASE '9'.
crnd-parrn(0] c - '0',
goto pf corn;

case '0':
cmd- Parn[OJ = 10;
goto pf corn;

case 'q':
crnd-'Parrn(O) = 11;
goto pfcom;

case 'w':

crd-,parm[0] = 12;
goto pfcon;

case 'e':
crd-)Parrn[0 = 13;
goto pfcom;

case 'r':
crnd-)parrn[0] = 14;
goto pfcom;

case 't':
crnd-)parrn(0] - 15;
goto pfcorn;

case 'y':
crnd-parrn[0J = 16;
goto pfcom;

case 'u':
cd->parrn[03 = 17;
goto pf corn;

case 'i':
crnd-'parrn[01 = 18;
goto pfcom;

case 'o':
cmd-'parzn[0] 19;
goto pfcon;

case 'p':
crnd-,parrn[0] = 20,
goto pfcon:

case '\r'-
cmd-'ParrntO] = 0;

pf corn:
cmTd-,funTct = APC;
crnd-,nparm = 1;
break;

case '[* : /* control sequence '
i = 0;
do

E-8

UM 620144300B
1 November 1985

num = 0;
while(isdigit(c = tgetc(chan))) num =10 *num + c

cmd-,Parm[i++] = num;
) while (c -== ')

cmd->funct = 3000 + c-
cmd-,nparm = i
break;

default:
cmd-.funct = 1000 + c-
cmd-,nparm = 0;

if ((i = doscreen(cmd)) =2

{ u c d p r [l = R W c r o) + 1
curcmd.parm[O] = ROW(curpos) + 1;

trmput(&curcmd);
doscreen(cmd);

if 0(i 0) trmput(cmd);
trmfls();

E-9

UM 6201443500B

/* NAME
* trmput - TeRMinal PUT

*SYNOPSIS

* void trmput(cmd)
* struct command *end;

*DESCRIPTION

* Puts an internal format command to the terminal.

*ifndef NDEBUG
static rflag = -1;
#endif

void trmput(cmd) svps
struct command *cmd;

char c;
struct attr tnew;
static struct attr tattr;

#ifndef NDEBUG
rflag++;

*endif

switch (cmd-,funct)

case 0:
if (tbit@(?vti.smode, NSMODE, IRM))

pendpos = curpos;
goto ref;

if (pendpos - 0) movcur(pendpos);
j =tbit(&fattribftermpos].aq, AQSIZ, FLAG) 9

1,NDSP : attrib[termpos].gr;
if (ffbda(&j. &tattr.gr, GRSIZ. 0) , 0)

cabit(&?tnew.gr. GRSIZ);
i = 0;
while ((k =i - ffbsa(&j. GRSIZ. M) - 0)

if (k ==FABL) k -SLBL;
if (k '=DIM &&? k 1=NDSP) sbit(Utnew.gr,
GRSIZ, k);

E-10

UM 620144300B
1 November 1985

if (ffbda(&tnew-gr. &3tattr.gr, GRSIZ, -1) 0)
setatr(tattr.gr =tnew.gr);

0 c cmd-~parm[O];
if (tbit(&fattrib~termpos].gr, GRSIZ. NDSP) iic

c\ ')

tputc(c, chan);
if (COL(++termpos) - 0)

pendpos = termpos - 1;
termpos = -1;

break;
case EEL:

tputc('\7'. chan);
break;

case ES:
if (pendpos ' 0) pendpos = termpos;
pendpos--;
break;

case NEL:
if (pendpos < 0) pendpos = termpos;
pendpos - COL(pendpos);

case LF:
case IND:

if (pendpos ,0) pendpos = termpos;
if (ROW(pendpos) , maxy - 1)

pendpos += maxx;
else

movcur(pendpos);
V tputc('\12', chan);

break;
case FF:
case NP:
case PP:

movcur(0);
if (tbitU(?vti.pmode, NPMODE, FRMK)) refresh():
else tputs('\33[J", chan);
break;

case CR:
if (pendpos ,0) pendpos = teriupos;
pendpos -~ COL(pendpos);
break-,

case HTS:

E- 11

UM 620144300B
1 November 1985

if (pendpos ~= 0) movcur(pendpos);
tputs("\33H", chan);
break;

case RI:
if (pendpos , 0) pendpos =termpos;

if (pendpos >- iaxx)
pendpos - maxx;

else

movcur(pendpos);
tputs("\33M", chan);

break;
case RIS:

tputs("\33c\33[H\33[J\33[?1;31\33[?7h\33[4;201\33[3g\33[m\
33-\33[q",

chan); /* removed \33[12h for Tek 410x
firmware bug *

termpos = 0;
pendpos - -1;
cabit(Utattr.gr, GRSIZ);
break;

case CPL:
if (pendpos (0) pendpos = termpos;
pendpos -- COL(pendpos);

case CUU:
if (pendpos ,0) pendpos = termpos;
pendpos - cmd->parm[O] *maxx;

break;
case CNL:

if (pendpos 0) pendpos = termpos;
pendpos - COL(pendpos);

case CUD:
case VPR:

if (pendpos 0) pendpos -termpos;
pendpos += cmd-)parm[OJ maxx;
break,

case CUF:
case HPR:

if (pendpos ,0) pendpos termpos;
pendpos += cmd-,parm[o);
break-,

case CUB:
if (pendpos ,0) pendpos =termpos;

pendpos -- cmd-,parm[O];
break;

E-12

UM 620 144300B
1 November 1985

case CUP:
case HVP:
case CPR:

pendpos = POS(cmd->parm(0]-1, cmd->parm[1]-1);
break;

case HT':
case CHT:

if (tbit(&vti.smode, NSHODE, TSM))
pendpos =curpos;

else

if (pendpos >= 0) movcur(pendpos);
for (j = 0; j ' cmd-)parm[Q]; j++)

tputc(L\11', chan);
termpos = curpos;
pendpos = -1;

break;
case ED:

if (tbit(&vti.pmode, NPHODE, FRMM)) goto ref;
* else

if (pendpos)= 0) movcur(pendpos);
tputs("\33[", chan);
if (cmd-'parm[Q] 0) tputnum(cmd-)parm[0], chan);
tputc('J'. chan);

break;
case EL:

if (tbit(&vti.pmode, NPMODE, FRMM)) got~o ref;
el1se

if (pendpos = 0) movcur(pendpos);
tputs("\33[V, chan);
if (cmd->parm[0] ,0) tputnum(cmd-,parm[oI, chan).
tputc('K', chan):

break;
case CBT:
case DAQ:

pendpoL = curpos;
break;

case HPA:
if (pendpos ,0) pendpos termpos:
pendpos += cmd-Uparm[0]-l COL(pendpos);
break;

E-13

% %

UM 620144300B
1 November 1985

case VPA:
if (pendpos , 0) pendpos - termpos;
pendpos +- (cmd->parm[O]-1 - ROW(pendpos)) * maxx;
break;

case TBC:
if (pendpos >= 0) movcur(pendpos);
tputs("\33[". chan);
for (i = 0; i, cmd-nparm; i++)

if (i 0) tputc(';', chan);
if (cmd-~parm~i] 0) tputnum(cmd-,parmi], chan);

tputc('g'. chan);
break;

case DSR:
if (pendpos)= 0) movcur(pendpos);
tputs("\33[6n", chan);
Xmit = 1;
break;

case REF:
tputs("\33' \33(?1 ;31\33[?7h\33[4;201\33[m\33=",

chan); /* removed \33[12h for Tek 410x
firmware bug *1

/* this is really not sufficient -need to reset tabs,
etc. */
termpos = pendpos - -1;

ref resho;
break;

case US:
pendpos =curpos;

case ICH:
case IL:
case DL:
case EF:
case DCH:
case ECH:
case SGR:
ref:

if (chgniax 0)

savepos =(pendpos =0 "pendpos :termpos);
refterm(chgmin. chgmax);
pendpos =savepos:

break,

E- 14

UMN 620144300B
1 November 1985

case SM:
for (1 = 0; i (cmd-mnparm; i++)

if (cmd-,parm[i] -= IRM) tputs("\3311q", chan);
break;

case RH:
for (i = 0; i , cmd-4nparm; i++)

if (cmd-,parm[i] = IRM) tputs("\33[q". chan);
break;

case MC:
* ifdef PRINTER

cmd-funct = REF;
prnput(cmd);
prnfls(;
break;

* endif
case RS:
case APC:
case SPM:
case RPM:

4 break;

*ifndef NDEBUG
if (Irfiag && (pendpos =0 9pendpos :termpos) !=curpos)

1printf("\n Sync error (trmput): termpos =%d, curpos
=/ %d \n"

* (pendpos '=0 9 pendpos : termpos), curpos);
printf(" command =%d\n". cmd-funct);
getchar(;

r flag--;
sendif

E- 15

UM 620144300B
1 November 1985

I' NAME
m ovcur - MOVe CURsor (internal)

*SYNOPSIS

* static void movcur(newpos)
* mnt newpos;

*DESCRIPTION

* Moves the terminal cursor to the specified position and
* resets any pending position.

static void movcur(newpos)
register mnt newpos;
I
register mnt dr, dc, nr, nc;

if (newpos 1=termpos)

dr - (nr =ROW(newpos)) - ROW(termpos);
dc - (nc =COL(newpos)) - COL(termpos);
if (termpos ~= 0 99 dr - 0)

tputs("\33[V, chan);
if (dc ,0)

I
tputnum(dc, chan);
tputc('C', chan);

el1se

tputnun(-do, chan);
tputc('D', chan);

else if (termpos , 0 &&(dc 0 iinc ==0))

if (dc 1= 0) tputc('\r', chan);
tputs("\33[". chan);
if (dr ,0)

tputnum(dr, chan);
tputc('B' , chan);

E-16

UM 620144300B
1 November 1985

else
I

tputnum(-dr, chan);
tPutc(A', chan);

else

tputs("\33[", chan);
if (nr ,0) tputnum(nr+l, chan);
tputc(';' , chan);
if (nc ,0) tputnum(nc+l, chan);
tputc('H., chan);

termpos =newpos;

pendpos =-

E-17

UM 620144300B
1 November 1985

/* NAME
* setatr - SET ATtRibutes (internal)

* SYNOPSIS
* void setatr(atr)
* int atr;
$

* DESCRIPTION
* Sets the specified terminal attributes.
,/

static void setatr(atr)
int atr;

register int i:

tputs("\33[", chan);
i = 0;
while (i ffbsa(&atr, GRSIZ, i)) , 0)

{
tputc(';', chan);
tputnum(i, chan);
}

tputc('m', chan);)

#ifdef PRINTER
/* *include PRINTER /
*include "C1600.C"
#endif

E-18

'A '1.1,",

U WV 4

w% % % w w *

% %

